Legume Intake is Inversely Associated with Metabolic Syndrome in Adults

Somayeh Hosseinpour-Niazi MSc¹, Parvin Mirmiran PhD², Zohreh Amiri PhD³, Firoozeh Hosseini-Esfahani MSc⁴, Nezhat Shakeri PhD⁴, Fereidoun Azizi MD⁴

Abstract

Background: Studies on the association between legume intake and metabolic syndrome (MetS) are sparse. The objective of this study is to evaluate the association between legume intake, MetS, and its components.

Methods: This study was conducted on 80 subjects (48% female) with MetS as cases and 160 age and gender-matched healthy controls. Anthropometric measures, blood pressure, fasting blood glucose, and lipid profiles were evaluated by standard methods. Dietary data were collected using a food frequency questionnaire (FFQ) and legume intake was determined. MetS was defined according to the definition of the Adult Treatment Panel III.

Results: The mean (SD) intake of legumes was 1.4 (0.9) servings/week for cases and 2.3 (1.1) servings/week for control subjects (P < 0.05). After adjustment for potential confounders, decreases in mean systolic blood pressure, fasting blood glucose, and increase in HDL cholesterol levels were observed across increasing quartile categories of legume intake. After adjustments for lifestyle and food groups, subjects in the highest quartile of legume intake had lower odds of having MetS compared with those in the lowest quartile [odds ratio (OR): 0.25; 95% CI: 0.11 – 0.64, P < 0.05], an association that weakened after adjustment for body mass index (BMI), but remained significant (OR: 0.28; 95% CI: 0.12 – 0.81, P < 0.05).

Conclusions: Legume intake is inversely associated with the risk of having MetS and some of its components.

Keywords: Adult, case-control study, legume intake, metabolic syndrome

Introduction

Metabolic syndrome (MetS) refers to the constellation of metabolic abnormalities that include glucose intolerance, abdominal obesity, dyslipidemia, and hypertension. Among several contributing factors that influence the prevalence of MetS, dietary factors play an important role in development or prevention of this syndrome. Dietary factors such as whole grains, dairy products, fruits and vegetables have an inverse association, whereas hydrogenated vegetable oils and red meat are positively associated with MetS. Among dietary determinants, legumes constitute a food group that has been reported to protect against the development of diabetes, cardiovascular disease, and cancer. Although, the Mediterranean dietary pattern or other dietary patterns that include increased legume intake have been shown to be inversely associated with MetS, limited data are available on the association between legume intake and MetS. Therefore, the aim of this study is to determine the association between legume intake, MetS, and its components.

Materials and Methods

Study population

This observational case-control study was conducted on individuals who referred to the outpatient clinics of Taleghani Hospital over a six-month period, between February and July 2009. Both cases and controls were selected from among persons who accompanied patients to the vaccination and dental clinics of this hospital. Initial criteria for eligible subjects were as follows: age 25 – 55 years; no change in diet in the past year; no use of corticosteroid medications three months prior to study entry; no use of other medications such as aspirin or multivitamins; and no history of cardiovascular disease, diabetes, cancer, or stroke because of possible changes in diet associated with these conditions. The case group consisted of subjects diagnosed with MetS, as defined by the third report of the National Cholesterol Education Program Adult Treatment Panel III, and included three or more of the following components: high serum triglyceride concentrations (≥ 150 mg/dl and/or use of hypotriglyceridemic medication); low serum HDL cholesterol concentrations (< 40 mg/dl in men and <50 mg/dl in women); elevated blood pressure (≥ 130/85 mmHg and/or use of hypertensive medication); abnormal glucose homeostasis (fasting plasma glucose ≥ 100 mg/dl and/or use of insulin or oral hypoglycemic medication); and enlarged waist circumference. The cutoffs...
for enlarged waist circumference were set at > 89 cm in men and > 91 cm in women, based on guidelines for the First Nationwide Study of the Prevalence of Metabolic Syndrome in Iran. Controls were accompanying persons (both healthy individuals who accompanied MetS patients and other patients seen in the clinics for various reasons) with less than three risk factors from ATP III criteria, selected from the same clinics as the cases. We selected two individual age- (±1 year) and gender-matched controls per case. This study included 39 women and 41 men with MetS as cases, and 78 women and 82 men without MetS as the control group. The Ethics Committee of the Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences approved the Ethics Committee of the Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences approved the study protocol and informed written consent was obtained from each subject.

Assessment of dietary intake
To assess the usual dietary intake during the past year, we used a valid and reliable semi-quantitative food frequency questionnaire (FFQ), which included 168 items of foods with standard serving sizes, as commonly consumed by Iranians. The frequency of consumption of each food item was questioned on a daily, weekly or monthly basis and converted to daily intakes; the portion sizes were then converted to grams using household measures. Then, the FFQ food items as based on their nutrient contents were categorized into food groups, which included fruits, vegetables, meats and fish, whole grains, refined grains, dairy products, and nuts. Due to the incompleteness of the Iranian Food Composition Table (FCT), we used the US Department of Agriculture (USDA) FCT to analyze foods and beverages for their energy and nutrient content. However, the Iranian FCT was used for some dairy products (i.e., kashk) not listed in the USDA FCT.

Legume intake included cooked lentils, beans, chickpeas, cooked broad beans, soy beans, mung beans, and split peas. Intake of each legume was calculated as grams per week and then adjusted for total energy intake by the residual method, as described by Willett and Stampfer, after which, this energy adjusted legume intake was converted to weekly intakes of servings.

Assessment of biomarkers
Blood samples were drawn from subjects after ten hours overnight fasting. Fasting plasma glucose was measured by the enzymatic colorimetric method using the glucose oxidase technique. Serum triglyceride concentrations were measured with the use of triglyceride kits (Pars Azmon Inc., Tehran, Iran) by enzymatic colorimetric tests with glycerol phosphate oxidase. HDL cholesterol was measured after precipitation of the apolipoprotein B-containing lipoproteins with phosphaetungic acid.

Assessment of anthropometric measures and blood pressure
Weight was measured while the subjects were minimally clothed and not wearing shoes, by using digital scales which were calibrated weekly. Height was measured with a tape measure while the subjects were in a standing position, without shoes, and with the shoulders in a normal position. Body mass index (BMI) was calculated from weight divided by height squared (kg/m²). Waist circumference was measured at the level of the umbilicus with the use of an outstretched tape measure without pressure to the body surface. Blood pressure was measured using a standardized mercury sphygmomanometer, on the right arm after a 15-minute rest with the patient in a sitting position. Two measurements were taken at one minute intervals and the average of the measurements was considered as the participant’s blood pressure. To reduce subjective error, all measurements were taken by the same technician.

Assessment of other variables
We used a questionnaire to obtain the following information: age, smoking status, educational level and current medication use of oral hypoglycemics, insulin, antihypertensives, and hypotriglyceremic drugs. The questionnaire also gathered information regarding estrogen use and medications which increase HDL cholesterol levels. Physical activity was assessed by a questionnaire that included a list of common activities of daily life. The frequency and amount of time spent on activities per week over the past 12 months were documented. Level of physical activity was expressed as metabolic equivalent hours per week (METs h/wk). Cigarette smoking status was categorized as current, non-, and ex-smoker. In this study, subjects who reported daily energy intakes outside the 800 to 4000 kcal/d range were excluded.

Statistical methods
Statistical analyses were conducted using SPSS version 15.0 (SPSS Inc., Chicago, IL, USA), Statistical Data Analysis version 8 (STATA crop, TX, USA), and SAS software, version 9.1.3 (SAS Institute Inc., Cary, NC, USA). Normality of distribution for continuous variables that included serum triglycerides and HDL cholesterol concentrations, blood pressure, fasting plasma glucose, waist circumference, and dietary intakes was assessed by the Anderson-Darling test using SAS software; all variables had normal distributions. The baseline components of MetS and characteristics were compared between cases and controls by independent sample t-test and Chi-square test. Controls were divided into four groups according to the quartiles of energy-adjusted legume intake, the cutoffs of which were ≤ 1.0, 1.1 to 1.7, 1.8 to 2.9, and ≥ 3.0 serving/weekly for quartiles 1 – 4, respectively and were used as cut points to categorize cases. Energy adjusted-means for dietary intakes were determined across quartiles of legume intake using a general linear model. The general linear model was used to assess components of MetS across quartiles of energy-adjusted legume intake and to estimate the P for trend in means of components of MetS across quartiles of energy-adjusted legume intake. Conditional logistic regression was used to calculate the odds ratios (ORs) and 95% CIs for MetS, with individuals in the lowest quartile category of legume intake as the reference category, using STATA. P < 0.05 was considered statistically significant.

To determine the association of energy adjusted legume intake with metabolic risks and its components, we used multivariable models controlled for physical activity (METs h/wk), smoking status (current, non-, and ex-smoker), education level (illiterate and primary school, high school graduate, college and over), total fiber (g/d), magnesium (mg/d) and BMI (kg/m²). For dietary variables, we further examined whether intakes of food groups associated with legume intake would explain these associations. The correlation coefficients between legume intake and food groups were calculated using Pearson correlation. Legume intake was significantly associated with vegetables (r = 0.3); fruits (r = 0.3); whole grains (r = 0.4); dairy products (r = 0.4); meat, fish and poultry (r = 0.4); and nuts (r = 0.1). There was a significant difference between intakes of fruit and dairy products between cases and controls, using the independent sample t-test. Therefore, we assessed the association between legume intake and MetS and its components by further
adjusting for the intakes of fruits and dairy products. In all multivariate models, the first quartile of energy adjusted legume intake was considered as a reference.

We also determined the propensity score using physical activity (METs h/wk), smoking status (current, non-, and ex-smoker), education level (illiterate and primary school, high school graduate, college and over), fruits (g/d), dairy products, magnesium (g/d) and BMI (kg/m²) as variables by the logit model using STATA software. The propensity scores for cases and controls were ranked separately from less to more. The cases were matched to controls using a propensity score with an acceptable range. After the second analysis following propensity scoring, data for 72 cases and 129 controls remained for analysis. The results of the propensity scores are shown in Table 1. The model adequacy was determined by Hosmer-Lemeshow (P = 0.72). After the second analysis following propensity scoring, results were similar to results of individual matching [two individual age- (±1 year) and gender-matched controls per case].

Results

The study included 39 women and 41 men with MetS as cases, and 78 women and 82 men in the control group, with an average of 41.4 ± 7.9 years. The mean intakes of legumes were 1.4 ± 0.9 servings per day for cases and 2.3 ± 1.1 servings per day for control subjects (P < 0.05). Characteristics of the study subjects in case and control groups are shown in Table 2. Weight, BMI, waist circumference, fasting blood glucose, serum triglyceride concentrations, as well as systolic and diastolic blood pressures were significantly higher in subjects with MetS, whereas HDL cholesterol levels were significantly lower in those with MetS. In the case group, 73.8% of cases had three risk factors, 20.0% had four risk factors, 19.4% had no risk factors, whereas 30.6% had one risk factor, and 50.0% had two risk factors. There were no significant differences in smoking habits, education levels, and current use of estrogen observed between the case and control groups.

Energy-adjusted means for dietary variables across quartile categories of legume intake are shown in Table 3. Subjects in the higher quartile of legume intake consumed more fruits, vegetables, meats, fish, whole grains, dairy products, and magnesium.

Table 1. Results of propensity scoring in case and control groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mean (SD)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>0.3240 (0.0886)</td>
<td>0.0173</td>
<td>0.568</td>
</tr>
<tr>
<td>Control</td>
<td>0.3514 (0.0853)</td>
<td>0.0177</td>
<td>0.572</td>
</tr>
<tr>
<td>Total</td>
<td>0.3338 (0.0882)</td>
<td>0.0173</td>
<td>0.572</td>
</tr>
</tbody>
</table>

Table 2. Characteristics and dietary intake of subjects with metabolic syndrome (MetS) and controls.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cases (n=80)</th>
<th>Controls (n=160)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of participants (men/women)</td>
<td>(41/39)</td>
<td>(82/78)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>41.4±8.3</td>
<td>41.4±7.7</td>
<td>0.974</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>92.6±12.3</td>
<td>82.9±10.4</td>
<td>0.012</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.8±3.3</td>
<td>25.3±3.6</td>
<td>0.002</td>
</tr>
<tr>
<td>Serum triglyceride concentrations (mg/L)</td>
<td>174±36</td>
<td>110±28</td>
<td>0.014</td>
</tr>
<tr>
<td>HDL cholesterol concentrations (mg/L)</td>
<td>36.8±7.0</td>
<td>43.3±8.1</td>
<td>0.025</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/L)</td>
<td>97.4±7.8</td>
<td>90.4±6.6</td>
<td>0.036</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>115±11.9</td>
<td>107±12.1</td>
<td>0.045</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>76.5±9.2</td>
<td>71.1±8.5</td>
<td>0.014</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>97.0±7.2</td>
<td>87.3±10.4</td>
<td>0.028</td>
</tr>
<tr>
<td>Physical activity (METs h/wk)</td>
<td>12.2±2.9</td>
<td>13.5±4.0</td>
<td>0.008</td>
</tr>
<tr>
<td>Current estrogen use (%)</td>
<td>12%</td>
<td>16%</td>
<td>0.254</td>
</tr>
<tr>
<td>Smoking status (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoked</td>
<td>77.5</td>
<td>82.5</td>
<td>0.631</td>
</tr>
<tr>
<td>Ex-smokers</td>
<td>6.3</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>16.2</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Education levels (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate and primary school</td>
<td>45.0</td>
<td>43.8</td>
<td>0.814</td>
</tr>
<tr>
<td>High school graduate</td>
<td>40.6</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>College and over</td>
<td>14.4</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>Dietary intakes (g/d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legumes</td>
<td>19.6±1.9</td>
<td>18.5±1.7</td>
<td><0.005</td>
</tr>
<tr>
<td>Vegetables</td>
<td>244±112</td>
<td>269±148</td>
<td>0.182</td>
</tr>
<tr>
<td>Fruits</td>
<td>309±199</td>
<td>380±236</td>
<td>0.021</td>
</tr>
<tr>
<td>Whole grain</td>
<td>78±55</td>
<td>84±49</td>
<td>0.429</td>
</tr>
<tr>
<td>Dairy products</td>
<td>305±198</td>
<td>354±196</td>
<td>0.074</td>
</tr>
<tr>
<td>Meat, fish and poultry</td>
<td>57.2±27.1</td>
<td>57.8±26.6</td>
<td>0.862</td>
</tr>
<tr>
<td>Nuts</td>
<td>8.6±6.8</td>
<td>10.0±7.8</td>
<td>0.194</td>
</tr>
</tbody>
</table>

BMI: Body mass index; METs h/wk: Metabolic equivalent hours per week. Continuous values are mean (SD).
The current study showed an inverse association between legume intake and MetS, fasting blood glucose, and systolic blood pressure. A positive association with HDL levels and MetS was noted. This association was independent of the consumption of other food groups such as whole grains, dairy products, and fruits and vegetables in which the beneficial effects on MetS have been shown.4,6

To date, few observational studies have examined the association of legume intake with MetS.12 However, previous studies investigating legume intake in the framework of dietary patterns have shown that the Mediterranean dietary pattern,13 or dietary patterns that include increased legume intake,14 reduced the risk of MetS. It should be noted that most likely overall diet quality may protect against MetS. In a cross-sectional study, Noel et al. have reported that having MetS, compared with those in the lowest quartile. This association remained significant after adjustments for total fiber and magnesium; further adjustment for BMI weakened this association but it remained significant.

Discussion

The current study showed an inverse association between legume intake and MetS, fasting blood glucose, and systolic blood pressure. A positive association with HDL levels and MetS was noted. This association was independent of the consumption of other food groups such as whole grains, dairy products, and fruits and vegetables in which the beneficial effects on MetS have been shown.4,6

To date, few observational studies have examined the association of legume intake with MetS.12 However, previous studies investigating legume intake in the framework of dietary patterns have shown that the Mediterranean dietary pattern,13 or dietary patterns that include increased legume intake,14 reduced the risk of MetS. It should be noted that most likely overall diet quality may protect against MetS. In a cross-sectional study, Noel et al. have reported increased risk of MetS with the traditional rice and legume pattern, possibly due to the high fat and refined rice intake in this dietary pattern.15

In the current study, the beneficial effects of legume intake on MetS are consistent with results of previous studies that document the protective effect of legume intake against diabetes7 and CVD;10 however the pathophysiologic mechanisms underlying these beneficial effects of legume intake are not fully understood, although the fiber and magnesium contents of legumes may explain these associations to some extent. To explore the potential mechanisms in the current study, we have adjusted our analysis for total fiber and dietary magnesium intake. After this adjustment, the associations between legume intake and MetS weakened, which indicated that magnesium and total fiber were the components of legumes that could reduce the risk of MetS. However after adjustments for these nutrients, this association remained significant. Therefore in addition to these beneficial components, other components in legumes such as polyphenol may be associated with MetS; however we could not obtain data for dietary polyphenols such as flavonoids. Legumes are also an important source of vitamin B-6; the adjustment for vitamin B-6 did not alter the association of the intake of legumes and the risk of MetS. This may be a result of the low bioavailability of vitamin B-6 content of legumes. More studies are required to clarify the components by which legume intake affects inflammation and MetS.

The findings of the present study are consistent with results of prospective studies that have shown an inverse association between glucose concentration (after an oral-glucose tolerance test) and dietary legume intake independent of carbohydrate intake and BMI.24,25 Also, long-term experimental studies have shown that inclusion of legumes in the diets of patients with obesity or cardiovascular disease resulted in improved glucose disposal.26,27 In contrast, other experiments failed to show any beneficial effects of legumes or chickpeas on plasma glucose in healthy or hypercholesterolemic subjects with an intervention of less than six weeks duration. The authors have explained that the choice of subjects with no apparent insulin sensitivity may have resulted in lack of an association between legume intake and hyperglycemia.28,29 However Jang et al. have shown a significant reduction of fasting glucose in non-diabetic CVD patients, compared with diabetic CVD patients, after 16 weeks of replacing whole grain/legume powder with refined rice.30 It seems that the low statistical power resulting from short durations of studies may result in a non-significant association between legume intake and glucose and insulin concentrations.

In the current study, HDL cholesterol was higher in the highest
quartile of dietary legume intake. Data on the effect of legumes on HDL cholesterol concentrations have been less consistent27,30,31 a meta-analysis of ten randomized control trial studies, in which the majority of participants were middle-aged men of whom many were hypercholesterolemic, showed that diets rich in non-soy legumes did not change HDL cholesterol concentrations.32 In support of results of some interventional studies it has been shown that inclusion of legumes in the diet did not affect31,33 or lower HDL cholesterol concentrations27,34. In contrast, other studies have reported that legume consumption increased HDL cholesterol concentrations.30,35 The interpretation of these findings is complicated because of the modification of lipid profile response to dietary treatment by genetic factors,30 and the difference in the study populations.

In this study, legume intake was inversely associated with blood pressure after adjustments for confounders. In support of our study, observational and experimental studies have shown that legume intake reduced blood pressure; in a cross-sectional study the con-
sumption of ≤ 2 serving/wk of legumes was associated with a four-fold higher risk of hypertension compared to the consumption of ≥ 5 serving/wk of legumes. The Italian National Research Council Study reported that the daily consumption of legumes has a stronger association with lower systolic blood pressure than infrequent consumption; however the differences were not significant because of limited statistical power. In contrast, the Coronary Artery Risk Development in Young Adults Study reported that legume intake was not associated with a 15-year cumulative incidence of elevated blood pressure in adults, which could have been due to the limited consumption of legumes. Decreased blood pressure associated with legume intakes may, in part, to be attributed to the high content of both protein and soluble fiber of legumes. A meta-analysis on 24 randomized controlled studies showed that soluble fiber decreased systolic blood pressure by -1.32 and diastolic by -0.82, an effect that was stronger than that of insoluble fiber. Observational studies have also reported that compared to animal protein, plant protein has a stronger inverse association with blood pressure, although results were inconsistent.

Previous studies have reported that legume intake, as a low glycemic index food, beneficially effects weight loss via satiety signals such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) to the satiety center in the hypothalamus, which causes a subsequent reduction in food intake. The current study showed an inverse association between legume intake and enlarged waist circumference, an association which disappeared after adjustment for BMI. This was not surprising because of the strong correlation between these two variables. The low glycemic index of legumes may have an important role via the mechanisms mentioned.

High intakes of legume in the present study facilitated the assessment of the relationship between legume intake and MetS. Nevertheless, this study does have its limitations. Given the case-control design, we could not determine causality between legume intake and MetS. Conclusions from dietary observational studies are always relatively difficult because of the potential for confounding factors such as other food groups. In this study, simultaneous adjustment for food groups has decreased the likelihood that the associations between legume intake and MetS were due to other food groups. However future studies that use longitudinal data are needed to clarify the effects of legumes with MetS. Since this study has included only adults, our findings cannot be extrapolated to older or younger populations.

In conclusion, this study suggests that legume intake is inversely associated with MetS, a finding that needs to be confirmed by further prospective studies.

References
2. Vimaleswaran KS, Radha V, Mohan V. Thr54 allele carriers of the Ala54Thr variant of FABP2 gene have associations with metabolic syndrome and hyperglycemia in urban South Indians. Metabolism. 2006; 55: 1222 – 1226.
26. Jang Y, Lee JH, Kim OY, Park HY, Lee SY. Consumption of whole grain and legume powder reduces insulin demand, lipid peroxidation,

